3D Myocardial Elastography In Vivo
نویسندگان
چکیده
Strain evaluation is of major interest in clinical cardiology as it can quantify the cardiac function. Myocardial elastography, a radio-frequency (RF)-based cross-correlation method, has been developed to evaluate the local strain distribution in the heart in vivo. However, inhomogeneities such as RF ablation lesions or infarction require a three-dimensional approach to be measured accurately. In addition, acquisitions at high volume rate are essential to evaluate the cardiac strain in three dimensions. Conventional focused transmit schemes using 2D matrix arrays, trade off sufficient volume rate for beam density or sector size to image rapid moving structure such as the heart, which lowers accuracy and precision in the strain estimation. In this study, we developed 3D myocardial elastography at high volume rates using diverging wave transmits to evaluate the local axial strain distribution in three dimensions in three open-chest canines before and after radio-frequency ablation. Acquisitions were performed with a 2.5 MHz 2D matrix array fully programmable used to emit 2000 diverging waves at 2000 volumes/s. Incremental displacements and strains enabled the visualization of rapid events during the QRS complex along with the different phases of the cardiac cycle in entire volumes. Cumulative displacement and strain volumes depict high contrast between non-ablated and ablated myocardium at the lesion location, mapping the tissue coagulation. 3D myocardial strain elastography could thus become an important technique to measure the regional strain distribution in three dimensions in humans.
منابع مشابه
Myocardial Elastography: A Strain Imaging Technique for the Reliable Detection and Localization of Myocardial Ischemia in Vivo
Myocardial Elastography: A Strain Imaging Technique for the Reliable Detection and Localization of Myocardial Ischemia in Vivo
متن کاملAngle-Independent Myocardial Elastography – Theoretical Analysis and Clinical Validation
Several methods have been introduced in the past few years to quantify left-ventricular strain in order to detect myocardial ischemia and infarction. Myocardial Elastography is one of these methods, which is based on ultrasound Radio-Frequency (RF) signal processing at high frame rates for the highest precision and resolution of strain estimation. Myocardial elastography estimates displacement ...
متن کاملAngle-independent and multi-dimensional myocardial elastography--from theory to clinical validation.
The angle-independent myocardial elastography, which shows good performance in our proposed theoretical framework using a three-dimensional, ultrasonic image formation model based on well-established, 3D finite-element, canine, left-ventricular models in both normal and left-circumflex ischemic cases, is employed as well as validated in vivo to assess the contractility of normal and pathologica...
متن کاملRegistered 3D Tagged MRI and Ultrasound Myocardial Elastography: Quantitative Strain Comparison
Ultrasound Myocardial Elastography (UME) and tagged Magnetic Resonance Imaging (tMRI) are two imaging modalities that were developed in the recent years to quantitatively estimate the myocardial deformations. Tagged MRI is currently considered as the gold standard for myocardial strain mapping in vivo. However, despite the low SNR nature of ultrasound signals, echocardiography enjoys the widesp...
متن کاملUltrasound Myocardial Elastography and Registered 3D Tagged MRI: Quantitative Strain Comparison
Ultrasound Myocardial Elastography (UME) and Tagged Magnetic Resonance Imaging (tMRI) are two imaging modalities that were developed in the recent years to quantitatively estimate the myocardial deformations. Tagged MRI is currently considered as the gold standard for myocardial strain mapping in vivo. However, despite the low SNR nature of ultrasound signals, echocardiography enjoys the widesp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on medical imaging
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2017